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Abstract

Hurricane Harvey brought extreme levels of rainfall to the Houston, TX

area over a seven-day period in August 2017, resulting in catastrophic flooding

that caused loss of human life and damage to personal property and public in-

frastructure. In the wake of this event, there has been interest in understanding
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the degree to which this event was unusual and estimating the probability of

experiencing a similar event in other locations. Additionally, researchers have

aimed to better understand the ways in which the sea surface temperature

(SST) in the Gulf of Mexico (GoM) is associated with precipitation extremes

in this region. This work addresses all of these issues through the development

of a multivariate spatial extreme value model.

Our analysis indicates that warmer GoM SSTs are associated with higher

precipitation extremes in the western Gulf Coast (GC) region during hurricane

season, and that the precipitation totals observed during Hurricane Harvey are

less unusual based on the warm GoM SST in 2017. As SSTs in the GoM are

expected to steadily increase over the remainder of this century, this analysis

suggests that western GC locations may experience more severe precipitation

extremes during hurricane season.

1 Introduction

Hurricane Harvey brought massive amounts of rainfall to the Houston, Texas area

from August 25–31, 2017. Over that seven-day period, portions of Houston were

inundated with precipitation totals approaching 80 cm, leading to flooding that re-

sulted in loss of life and damage to property. As this disastrous and highly impactful

event came to an end, important questions came to the forefront; in this work, we

attempt to address some of these issues. To this end, we aim to characterize the

degree to which the Harvey event was anomalous and to estimate the probability of

observing additional precipitation events of this magnitude in the Gulf Coast (GC)

region, while taking into account the impact of sea surface temperatures (SSTs) in

the Gulf of Mexico (GoM).

Extreme value theory (EVT), the branch of statistics that models the far upper
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tails of the distributions of random variables, offers approaches that may be useful for

modeling precipitation events such as Harvey. In the US GC region, the series of pre-

cipitation observations at individual stations is relatively short, and estimators used

to characterize extremes may have a relatively high degree of uncertainty associated

with them. Therefore, in order to reduce uncertainty by borrowing strength from

nearby locations, we utilize a spatial modeling procedure; the ultimate goal in this

work is to address our research aims via a spatial model built within the framework

provided by EVT.

Davison et al. (2012) and Cooley et al. (2012) offer overviews of spatial extremes

methods and highlight several popular modeling approaches, including max-stable

process models and latent process models. Max-stable processes (Brown and Resnick,

1977; Opitz, 2013; Kabluchko et al., 2009; Ribatet and Sedki, 2013; Schlather and

Tawn, 2003; Smith, 1990) yield models that are theoretically appealing and have

the ability to model the spatial extent of extreme events; however, the likelihood is

not tractable for even a relatively small number of stations and therefore inference

is less than straightforward. If the primary focus of the analysis is on marginal

quantities, such as pointwise return levels or exceedance probabilities, latent process

models are often preferred. In these models, the parameters of a univariate extreme

value distribution, such as the Generalized Extreme Value (GEV) distribution or

the Generalized Pareto Distribution (GPD), are assumed to be realizations of latent

spatial processes; for inference, Bayesian approaches are often utilized. For example,

Cooley et al. (2007) use a Bayesian hierarchical modeling approach to spatially model

GPD parameters across a large portion of Colorado. Other works have used Bayesian

hierarchical approaches to spatially model GEV parameters (Cooley and Sain, 2010;

Dyrrdal et al., 2015; Gaetan and Grigoletto, 2007; Ghosh and Mallick, 2011; Schliep

et al., 2010; Sang and Gelfand, 2009).
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In the modeling approach taken in this work, we assume that maximum seven-day

precipitation totals during hurricane season at GC locations approximately follow the

GEV distribution. In order to investigate the ways in which the SST in the GoM is

associated with extreme precipitation in the US GC, we allow these GEV parameters

to depend on a GoM SST covariate. Exploratory analysis suggests that there may be

dependence among GEV parameters, and therefore we develop a multivariate spatial

model; for inference, a two-stage frequentist approach is employed. Other works have

used similar two-stage inference approaches in spatial analyses (Holland et al., 2000;

Russell et al., 2016; Tye and Cooley, 2015). Nearby locations may experience extreme

precipitation from the same event, resulting in dependence between annual maxima

for which many previous spatial models of this sort have failed to account. Our model

allows us to incorporate dependence of this type and uses the nonparametric bootstrap

to estimate its effect. Spatial interpolation is used to estimate GEV parameters at

unobserved locations, allowing us to characterize precipitation extremes throughout

the GC region.

Immediately following Hurricane Harvey, several works analyzed the event and

its impact on the region. Risser and Wehner (2017) model precipitation extremes in

the Houston area via the GEV distribution and conclude that human induced climate

change was likely responsible for at least an 18.8% precipitation increase in the Harvey

event, and likely increased the chances of seeing that level of observed rainfall by a

factor of at least 3.5. The analysis of van Oldenborgh et al. (2017) uses comparisons of

GEV fits to extreme precipitation on both observational and model data to perform an

attribution analysis. They conclude that global warming made Harvey precipitation

approximately 15% more intense and also made an event of Harvey’s magnitude three

times more likely to occur. The approach of Emanuel (2017) is based on simulating

a large number of GC storms using an atmospheric model with boundary conditions
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taken from general circulation models (GCMs), allowing him to make projections

for future extreme events by using boundary conditions from GCMs under projected

future scenarios. Based on this analysis, he estimates the chances of observing an

event of Harvey’s magnitude in the present and in the future, and predicts a sharp

increase in this probability under global warming scenarios. Trenberth et al. (2018)

also take a physical based modeling approach, and investigate the link between oceanic

warming and Hurricane Harvey. The work concludes that warmer ocean temperatures

provided additional energy that resulted in higher precipitation levels for Harvey.

All of the works mentioned here provide insight and analysis that help to better

understand the Harvey event and the ways in which it may be related to climate

change; however, the analysis provided in this work is fundamentally different in terms

of the modeling procedure and research aims. We aim to utilize a spatial analysis to

understand precipitation extremes over for a larger spatial domain. Emanuel (2017)

does give some results for the whole GC region, but he did not provide a methodology

for observing how probabilities of extreme events vary over that region, which this

paper does.

This manuscript is organized in the following manner. Section 2 begins by giving

a brief review of univariate extremes and the block maxima approach; it concludes by

introducing our multivariate spatial model and two-step inference procedure. Section

3 describes the data used in this work, and presents the results of the multivariate

spatial analysis with focus on the role that GoM SST plays on GC precipitation

extremes. We conclude with a discussion in Section 4, where we consider the impact

of SST projections on precipitation extremes in the region.
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2 Background and Modeling Procedure

We begin this section by reviewing the GEV distribution and the block maxima

approach from univariate EVT. We then describe our multivariate spatial model and

our corresponding two-stage frequentist inference procedure. Next, we describe our

method of accounting for dependence between annual maxima at nearby locations,

and conclude by outlining our method for spatial interpolation.

2.1 Block Maxima Approach to Univariate Extremes

In EVT, the block maxima approach provides a theoretical framework for univariate

extreme value analysis, and is an commmon choice for modeling the far upper tail

of pointwise precipitation data. Define Mn = Max{X1, . . . , Xn} for the iid sample

X1, . . . , Xn. If there exist sequences an > 0 and bn such that

P

(
Mn − bn
an

≤ z

)
→ G(z)

for non-degenerate G, then G must be a member of one of the following families:

Reversed Weibull, Gumbel, or Fréchet. The Generalized Extreme Value (GEV) dis-

tribution is a three parameter family that contains each of the three aforementioned

distributions as a special case. For Z ∼ GEV(µ, σ, ξ), its cumulative distribution

function is defined by

P (Z < z) = exp

(
−
(

1 + ξ

(
z − µ
σ

))−1/ξ
+

)
, (1)

where c+ := max{c, 0}. The GEV parameters are typically referred to as the location

parameter µ ∈ R, the scale parameter σ > 0, and the shape parameter ξ ∈ R. The

shape parameter characterizes the GEV density’s tail: when ξ < 0, the tail will be
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bounded and the GEV reduces to the Reversed Weibull; for ξ > 0, the tail is heavy

and the GEV reduces to the Fréchet; and ξ → 0 results in a light tail, and the GEV is

equivalent to the Gumbel. The reader is referred to Coles (2001) as an introductory

resource for univariate extremes.

The three GEV parameters can be used to characterize extremes through summary

parameters, some of which are determined by the quantile function of the GEV. For

Z ∼ GEV(µ, σ, ξ), the value that is exceeded with probability p ∈ (0, 1) can be

calculated via

Zp(µ, σ, ξ) =


µ− σ

ξ
(1− {− log(1− p)}−ξ) for ξ 6= 0

µ− σ log{− log(1− p)} for ξ = 0.

(2)

When the data are structured such that each year contains exactly one block, the

r-year return level is given by RLr = Zp(µ, σ, ξ) for p = r−1.

For inference, the GEV parameters are typically estimated based on a sample

of block maxima using a likelihood or moment based method (Coles, 2001). Based

on the resulting GEV parameter estimates, the r-year return level can be estimated

via R̂Lr = Zr−1(µ̂, σ̂, ξ̂) using Eq. (2). Another useful quantity to estimate is the

probability of observing a block maximum that exceeds some value of interest, z′.

This exceedance probability, P (Z > z′), can be estimated using Eq. (1) based on the

parameter estimates µ̂, σ̂, and ξ̂.

2.2 Multivariate Spatial Model

For Yt(s), the seasonal 7-day maximum precipitation total in year t at location s ∈

D ⊂ R2, assume

Yt(s)
·∼ GEV(µt(s), σt(s), ξ(s)).
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In order to investigate the relationship between precipitation extremes in the US Gulf

Coast region and GoM SST, we incorporate an annual GoM SST covariate in year

t into the location and scale parameters by modeling the parameters of the GEV at

location s via

µt(s) = θ1(s) + SSTt θ2(s)

log σt(s) = θ3(s) + SSTt θ4(s)

ξ(s) = θ5(s). (3)

In univariate extremes, the shape parameter is known to be the most difficult param-

eter to estimate; therefore, we choose not to include SST in its functional form.

To allow us to characterize precipitation extremes throughout the region, a pri-

mary aim of this work is to be able to estimate these parameters ∀ s ∈ D, observed

and unobserved. To this end, we rely on a multivariate spatial model. At location

s ∈ D and θ(s) = (θ1(s), θ2(s), θ3(s), θ4(s), θ5(s))T , we assume

θ(s) = β + η(s) (4)

where β = (β1, β2, β3, β4, β5)
T represents the mean parameter values over D and

η(s) = (η1(s), η2(s), η3(s), η4(s), η5(s))T are spatially correlated random effects. In

order to obtain a relatively simple multivariate spatial model, we use the coregional-

ization formulation (Wackernagel, 2003),

η(s) = A δ(s), (5)

for δ(s) = (δ1(s), δ2(s), δ3(s), δ4(s), δ5(s))T and lower triangular matrix A. The lower
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triangular formulation is suggested by Finley et al. (2008) and δi (i ∈ {1, . . . , 5}) are

independent second-order stationary Gaussian processes with mean 0 and covariance

function given by Cov(δi(s), δi(s
′)) = exp (−‖s− s′‖/ρi) for s, s′ ∈ D, where ρi > 0

is the range parameter. In this work, we exclusively utilize the exponential covariance

function as we believe that use of alternative covariance functions would make little

difference in terms of estimating θ(s) at s ∈ D, which is ultimately the purpose of

the analysis. This issue has been addressed in prior literature, and the results show

that choice of spatial covariance function makes little difference in the predictions of

interest (Holland et al., 2000, 2004).

2.3 Two-Stage Inference Procedure

At the first stage of inference, we obtain pointwise maximum likelihood estimates

θ̂(sl) = (θ̂1(sl), θ̂2(sl), θ̂3(sl), θ̂4(sl), θ̂5(sl))
T at station l ∈ {1, . . . , L}. We then make

the assumption that

θ̂(sl) = θ(sl) + ε(sl), (6)

where ε(sl) = (ε1(sl), ε2(sl), ε3(sl), ε4(sl), ε5(sl))
T is estimation error that is indepen-

dent of η. Equations (4), (5), and (6) imply

θ̂(sl) = β + A δ(sl) + ε(sl).

We further assume that

(ε1(s1), . . . , ε1(sL), . . . , ε5(s1), . . . , ε5(sL))T ∼ N(0,W ),

where 0 is the zero vector and W is an unknown covariance matrix. This multivari-

ate Gaussian assumption is justified by asymptotic theory for maximum likelihood
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estimators (MLE). Even in the dependent case, the CLT for the score statistic (the

first derivative vector for the log likelihood) implies multivariate Normality in large

samples. This is then normalized by the inverse of the Fisher information matrix,

leading to multivariate Normality for the MLE. This argument is valid in any case

where the usual regularity conditions for MLE apply.

Defining

Θ = (θ1(s1), . . . , θ1(sL), . . . , θ5(s1), . . . , θ5(sL))T

and

Θ̂ = (θ̂1(s1), . . . , θ̂1(sL), . . . , θ̂5(s1), . . . , θ̂5(sL))T ,

we obtain the model

Θ̂ ∼ N(β ⊗ 1L,ΣA,ρ +W ) (7)

for

ΣA,ρ := (IL ⊗ A)

[
5∑
i=1

(
eie

T
i ⊗ Ωi(ρ)

)]
(IL ⊗ A)T ,

where ⊗ represents the Kronecker product, IL is the L dimensional identity matrix,

1L is a vector of ones having length L, ei is the five dimensional standard basis vector

with a 1 in the ith position, and Ωi(ρ) is a matrix where the element in the jth row

and kth column is given by Cov(δi(sj), δi(sk)).

At the second stage of inference we use Θ̂, the vector of pointwise MLEs, and

W as inputs and estimate β, A, and ρ via an iterative procedure to maximize the

likelihood function. During this optimization procedure, we consider W as fixed and

known, ultimately yielding estimates β̃, Ã, and ρ̃.
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2.4 Modeling Dependence of Annual Maxima

In order to estimate the model parameters via maximum likelihood as outlined in

Section 2.3, we must first select W . A simple approach is to assume ε(sl) is indepen-

dent of ε(sl′) for all l 6= l′, resulting in a banded sparse estimator. In this work, we do

not utilize this approach as it does not allow us to account for dependence between

annual maxima at nearby locations. In the GC region during hurricane season, this

type of dependence is anticipated; when a location is impacted by an extreme precip-

itation event such as a hurricane, neighboring locations will also expect see extreme

levels of precipitation from the same event. An alternative approach to selecting W

is to not make any assumptions on its structure, thereby allowing for dependence

between annual maxima. We choose to take this approach, and estimate W via a

nonparameteric block bootstrap approach; we denote this resulting estimator by Wbs.

At station l (l = 1, . . . , L), the observed series of seasonal 7-day maxima is de-

noted by Y1(s1), . . . , YT (sl). For the bth bootstrap iteration (b = 1, . . . , B), we first

obtain {tb1, . . . , tbT}, a resampled set of years chosen from {1, . . . , T} with replace-

ment. We then obtain the resampled series of seasonal 7-day maxima Y ∗b (sl) =

(Ytb1(sl), . . . , YtbT (sl))
T for l = 1, . . . , L, emphasizing that for each bootstrap replica-

tion the same resampled set of years is used at all spatial locations in order to preserve

the spatial dependence in the corresponding estimates. We then use numeric opti-

mization to estimate the pointwise maximum likelihood estimates separately for each
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combination of station and bootstrap replication, obtaining the matrix

Γ =



(θ̂11(s1), . . . , θ̂
1
1(sL), . . . , θ̂15(s1), . . . , θ̂

1
5(sL))

...

(θ̂b1(s1), . . . , θ̂
b
1(sL), . . . , θ̂b5(s1), . . . , θ̂

b
5(sL))

...

(θ̂B1 (s1), . . . , θ̂
B
1 (sL), . . . , θ̂B5 (s1), . . . , θ̂

B
5 (sL))


where θ̂bi (sl) is the MLE at station l based on the sample of block maxima Y ∗b (sl).

The entry in the jth row and kth column of Wbs is defined to be the sample

covariance between the jth and kth column vectors of the matrix Γ. This approach

does allow for dependence between annual maxima at nearby locations; however,

there are problems with this approach. For even a moderate number of stations,

Wbs will be a relatively large matrix, and it is reasonable to believe that this matrix

may contain at least some noise due to overfitting. Additionally, exploratory analysis

indicates that Wbs tends to produce estimated parameter fields that are less smooth

than we believe that they might be. Statistical regularization procedures have been

developed to deal with these types of scenarios (Bickel et al., 2006).

Covariance tapering (Furrer et al., 2006) is a procedure that is designed to regular-

ize covariance matrices via multiplication (using the Hadamard product) by a sparse

taper matrix. Other methods of covariance regularization exist (Barnard et al., 2000;

Daniels and Kass, 2001; Hannart and Naveau, 2014; Katzfuss et al., 2016; Schäfer and

Strimmer, 2005); in this work we choose to regularize Wbs via the covariance tapering

method due to the fact that the resulting matrix will be sparse, thereby eliminating

long range dependence. This property is appealing in terms of being able to account

for dependence between annual maxima from the same precipitation event.
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We obtain the tapering based estimator of W via

Wtap(λ) = Wbs ◦ Ttap(λ).

Here, ◦ is the Hadamard product and Ttap(λ) is the taper matrix with range parameter

λ > 0. Furrer et al. (2006) propose Ttap(λ) to be a matrix where the jth row and

kth column is given by Cor(‖sj −sk‖) for any correlation function with the property

that Cor(‖s− s′‖) = 0 ∀ s, s′ ∈ D such that ‖s− s′‖ > λ. Selecting a smaller value

of λ results in a Ttap(λ) that increases in terms of sparsity, which will also result in

a sparse Wtap(λ). The sparsity of Wtap(λ) does not necessarily imply Cov(Θ̂) will

also be sparse, as evidenced by its form in (7); therefore, we do not experience any

computational gains. However, this sparsity provides the intuitive appeal of avoiding

the presence of dependence between annual maxima at stations that are separated

by more than λ units in distance.

3 Characterizing US Gulf Coast Precipitation Ex-

tremes

We begin this section by describing the precipitation station data and GoM SST data

that we use in our analysis. We then use the output of the fitted spatial model to

interpolate to a grid of points covering the entire US GC region, and to characterize

precipitation extremes throughout the region via a return level analysis. Next, we

estimate the degree to which the Harvey event was unusual in the Houston area, and

conclude by using model output to estimate exceedance probabilities throughout the

region.
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3.1 Data Description

In this work, the study region D is defined to include the portion of the US state

of Texas east of the 100◦W meridian, and all of the US states of Florida, Georgia,

Alabama, Mississippi, and Louisiana. We use precipitation data from all Global

Historical Climatology Network (GHCN) stations located in this study region; the

GHCN is described in greater detail in Menne et al. (2012). As the focus of this work

is on precipitation extremes during GC hurricane season (June–November), we obtain

daily precipitation totals during these months for the years 1949–2017. Seasons with

more than five missing values are omitted from analysis, and stations with at least

10 seasons omitted are excluded from analysis. A total of 326 stations meet these

criteria and are included in analysis; their locations are plotted in Figure 1. In order

to perform analysis of the Harvey as an out of sample event, data for the year 2017

are held out of the model fitting portion of the analysis.

In order to consider GoM SST as a potential covariate, we obtain a monthly mean

GoM SST series by averaging all values in the Hadley Centre Sea Ice and Sea Surface

Temperature (HadISST) data set (Rayner et al., 2003) between longitudes 83◦ − 97◦

west and latitudes 21◦ − 29◦ north. In this work, we wish to consider late spring

GOM SST as a covariate, as this is the time frame that leads directly into hurricane

season; therefore, we define our GoM SST covariate to be the average SST from

March through June. Although we use the average SST from March through June in

our work, exploratory analysis suggested that other similar lags may produce similar

results.

The left panel of Figure 2 plots the centered and scaled GoM SST covariate, while

the right panel of Figure 2 gives the corresponding histogram. The bimodal appear-

ance of the histogram suggests that the time series tends to oscillate between low and
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Figure 1: We plot the location of the 326 GHCN stations in the US Gulf Coast region
used in this analysis.

high values. The lower mode looks to be approximately one standard deviation below

the mean, and the upper mode appears to be approximately one standard deviation

above the mean. Therefore, in the remainder of this work we define low SST and high

SST to be a centered and scaled GoM SST value of -1 and 1 (respectively). After

centering and scaling, the SST in 2017 is approximately 1.7; we refer to this GoM

SST value as 2017 SST.

3.2 Results of Spatial Analysis

For analysis, we use Wtap(λ) based on the taper matrix Ttap(λ) = 151
T
5 ⊗ CW2(λ),

where CW2(λ) is a correlation matrix based on the Wendland 2 covariance function

(Wendland, 1995) with λ = 75km. This choice of λ is partly based on intuition,

as we believe that dependence between annual maxima due to extreme events will
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Figure 2: We center and scale the series of March – June average GoM SSTs from
1949 – 2016, and present a time series plot (L) and a histogram (R).

be localized, particularly for the GC region during hurricane season. This choice is

reasonable given the physical intuition that the main reason for dependence is that

a large storm can affect multiple sites simultaneously, and this is a reasonable upper

bound for the physical extent of a single large precipitation event. Additionally,

a sensitivity analysis indicates that the results presented here would change little

for λ = 150km; beyond this distance we believe that we would be modeling more

than the dependence between annual maxima due to the same event that we aim to

capture. Two special cases, λ → 0 and λ → ∞, correspond with independent errors

and absence of regularization (respectively). Through a simulation study (available

in the Supplemental Materials), we explore the issue of selecting λ. The results of

Simulation Study 1 suggest that the true error curve for return level estimation as a

function of λ is convex, and that estimation may be improved by choosing a sensible

λ ∈ (0,∞).
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We also considered models without the SST covariate in the location and scale

parameter (and both), but choose to use the full model specified in (3) based on AIC.

Parameter estimation is performed via an iterative procedure in order to maximize

the likelihood, yielding the estimates β̃, Ã, and ρ̃.

3.2.1 Characterizing Gulf Coast Precipitation Extremes via Return Level

Estimates

To spatially interpolate the value of θ(s) for s ∈ G ⊂ Z2, where G is a grid of

points covering the US GC region, we solve the universal kriging equations (Cressie,

1993). At each s ∈ G, we obtain θ̃(s), and use (2) to estimate 100-year return levels.

Figure 3 in the Supplemental Materials presents a map of the corresponding 100-year

return levels (in cm) for the three SST scenarios considered in this work; the top

panel plots the estimates based on low SST, the middle panel plots the estimates

based on high SST, and the bottom panel plots the estimates based on 2017 SST.

We use the simulation based procedure proposed in Tye and Cooley (2015) to obtain

90% pointwise confidence intervals for each of the three SST scenarios, presented

in Figure 4 in the Supplemental Materials. In the simulation based procedure, we

simulate 2,500 multivariate realizations from the fitted process for all s ∈ G, and then

calculate estimated 100-year return levels for each realization and use the percentile

method to obtain pointwise confidence intervals.

For each of the three SST scenarios, we observe that estimated return levels tend

to be higher along the Texas coast and in southern Louisiana, Mississippi, Alabama

and the Florida panhandle. Both the lower and upper endpoints of the pointwise

90% confidence intervals follow a similar spatial pattern, and reflect the relatively

high degree of uncertainty involved in characterizing extremes. For high SST, the

estimated 100-year return levels are higher in much of the region, particularly on the
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eastern Texas coastal region. The estimated 100-year return levels for 2017 SST look

to be similar to high SST, and tend to show similar changes versus low SST.

Estimated 100-year return levels tend to be higher in much of the US GC for

warmer SST scenarios; however, Figure 3 in the Supplementary Materials does not

make it easy to quantify this effect. In order to better facilitate comparison, Figure 3

plots the ratio of estimated 100-year return levels for high SST versus low SST, and

suggests that warming GoM SST does not affect the US GC region uniformly. The

ratio is close to one for most of Florida and Southern Georgia, suggesting that these

locations may not be impacted by GoM SSTs. In contrast, the western GC looks to be

more affected by extreme precipitation events for warmer GoM SST scenarios. Figure

5 in the Supplemental Materials gives the corresponding pointwise 90% confidence

intervals based on simulation based procedure, and provides additional evidence of

the impact of warming GoM SSTs on extreme precipitation events on the Texas

coast and southern Louisiana and Mississippi. In Figure 3, cells whose pointwise 90%

confidence intervals do not contain one are denoted with a small black dot. Figure

4 plots the ratio of estimated 100-year return levels for 2017 SST versus low SST,

and Figure 6 in the Supplemental Materials gives the corresponding pointwise 90%

confidence intervals. The spatial pattern in these plots looks to be similar, but the

impact on the western GC appears to be even greater. As before, in Figure 4, cells

whose pointwise 90% confidence intervals do not contain one are denoted with a small

black dot.

3.2.2 Understanding the Degree to Which Harvey was Unusual in Hous-

ton

Over the course of the Harvey event, some areas of Houston saw seven-day precipita-

tion totals approaching 80cm. Harvey was clearly an extremely unusual precipitation

18
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Figure 3: We plot the estimated ratio of 100-year return levels for high SST versus low
SST. Cells whose pointwise 90% confidence intervals do not contain one are denoted
with a small black dot.

event; the fitted model output can be used to understand just how anomalous this

event was. For a range of seven-day hurricane season precipitation totals and based

on output from our fitted spatial model, Figure 5 plots observed return periods in

Houston for low SST, high SST, and 2017 SST (top to bottom, respectively). In

this analysis, the observed return period is defined to be the reciprocal of estimated

exceedance probability. We plot pointwise 90% confidence intervals, shown in gray,

that are generated via the simulation based approach. Although there is a great

deal of uncertainty, these graphs suggest that devastating precipitation events during

hurricane season in Houston are more unusual when the GoM SST is low and less

unusual when the GoM SST is higher.
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Ratio of 100 Yr RLs (2017 SST vs Low SST)

Figure 4: We plot the estimated ratio of 100-year return levels for 2017 SST versus low
SST. Cells whose pointwise 90% confidence intervals do not contain one are denoted
with a small black dot.

3.2.3 Estimating the Chances of Observing another Harvey-level Event

in the Gulf Coast Region

In terms of estimating precipitation return periods for the Harvey event in Houston,

Emanuel (2017) considers a storm total of 50 cm, noting that it is a “conservative

value”. Risser and Wehner (2017) spatially average station data over a larger and

a smaller region surrounding Houston. They find that area averaged storm total is

approximately 48 cm in their larger region, and the corresponding total is approx-

imately 70 cm in their smaller region. Although parts of Houston may have expe-

rienced higher seven-day precipitation totals due to Hurricane Harvey, we consider

precipitation totals of 50 cm and 70 cm in this portion of the analysis.

Based on output from our fitted model, Figure 6 plots the estimated probability

of observing a seven-day hurricane season precipitation total in excess of 50 cm for
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Figure 5: For a range of seven-day hurricane season precipitation totals (in cm)
and based on output from our fitted spatial process, we plot observed return periods
(reciprocal of estimated exceedance probabilities) in Houston for low SST (top panel),
high SST (middle panel), and 2017 SST (bottom panel). Pointwise 90% confidence
intervals (shown in gray) are generated via the simulation based approach.
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low SST, high SST, and 2017 SST in the GC region. The western GC has the highest

estimated exceedance probabilities, and these estimates tend to be larger for warmer

GoM SST. Another way to estimate the probability of observing another event on

the scale of Harvey is to consider annual average precipitation as a baseline. The

seven-day total of 50 cm in Houston roughly corresponds to 38% of its average an-

nual precipitation. Figure 7 plots the estimated probability of observing a seven-day

hurricane season precipitation total in excess of 38% of each location’s annual aver-

age precipitation for low SST, high SST, and 2017 SST. It is interesting to note the

differences between Figure 6 and 7. The probability of exceeding 50 cm of precipita-

tion in coastal Texas increase as GoM SST increases, but the estimated probability

is close to zero in areas away from the central and western GC. When annual average

precipitation is taken into account, the estimated exceedance probabilities tend to be

higher in southern and central Texas. Figures 7 and 8 in the Supplemental Materials

are analogous to Figures 6 and 7, differing only in that they consider a storm total of

70cm, and yield similar conclusions.

Looking at exceedance probabilities in this manner offers two unique viewpoints.

The approach in Figure 6 provides estimates of exceeding a extremely large absolute

amount of precipitation; the approach in Figure 7 provides estimates of exceeding a

large amount of precipitation relative to each location’s climate. Both perspectives

may be important in terms of informing engineering standards, and when used to-

gether could offer a more complete picture of precipitation extremes at GC locations.

4 Discussion

In this work, we assume that seven-day maximum precipitation totals during hurri-

cane season at GC locations are approximately GEV, where the location and scale
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Figure 6: Based on output from our fitted model, we plot the estimated probability
of observing a seven-day hurricane season precipitation total in excess of 50 cm for
low SST (top panel), high SST (middle panel), and 2017 SST (bottom panel).
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Figure 7: Based on output from our fitted model, we plot the estimated probability
of observing a seven-day hurricane season precipitation total in excess of 38% of each
location’s annual average precipitation (corresponding to 50 cm in Houston) for low
SST (top panel), high SST (middle panel), and 2017 SST (bottom panel).
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parameters are allowed to depend on a late spring GoM SST covariate. Our analysis

uses precipitation data from the GHCN, and a GoM SST covariate derived from the

HadISST data set. To model the GEV parameters, we use a multivariate spatial

model and perform inference using a two-stage frequentist approach, where pointwise

MLEs are used to estimate parameters of the spatial process. In order to characterize

precipitation extremes across the region, we use universal kriging to perform spatial

interpolation. The analysis presented in Section 3 indicates that warmer late spring

GoM SSTs correspond with higher seven-day precipitation extremes during hurricane

season in the western US GC. This increase seems to be the largest in the eastern

Texas coastal region and southern Louisiana.

Generally speaking, the method proposed in this work could be compared with

two broad classes of methods in terms of aims and research objectives. The Bayesian

hierarchical approach to modeling the GEV parameters may be an appealing alter-

native, as it eliminates the need for two-stage analysis; however, dependence between

observations would need to be captured by somehow introducing dependence on the

latent structure. Our method has more in common with works that have used two-

stage frequentist approaches to spatial analysis. However, other works of this type

have not attempted to model dependence between annual maxima as we have. Our

procedure of modeling this type of dependence using a regularized bootstrap based

estimator is novel, and a simulation study (available in the Supplemental Materials)

suggests that it may yield better return level estimates for an appropriate choice of

λ.

Although we only consider precipitation extremes in this work, the methodology

proposed here could be applied to other types of data. In terms of environmental

applications, this method might be useful for modelling air pollution, air temperature,

and wind speed. However, when using this procedure for other types of data, the
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analyst would need to think carefully about a reasonable value of λ, as the choice

would be closely tied to the inherent dependence structure for that data type.

Alexander et al. (2018) study SSTs in large marine ecosystems (LME) throughout

the northern hemisphere and use climate model output to predict changes in SST. In

the GoM, Alexander et al. (2018) indicate that the increase in SST could be in the

range of 0.2◦C – 0.4◦C per decade over the years 1976 – 2099. The authors also predict

that GoM SSTs may continue to exhibit similar amounts of year to year variability,

suggesting that the time series of late spring GoM SSTs may continue to oscillate as

depicted in Figure 8. Alexander et al. (2018) write that, “The shift in the mean was

so large in many regions that SSTs during the last 30 years of the 21st century will

always be warmer than the warmest year in the historical period”. In their work, the

authors define the historical period to be 1976 – 2005.
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Figure 8: We plot the time series of late spring mean GoM SSTs.
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If the GoM SST increases predicted by Alexander et al. (2018) come to fruition,

even the coolest GoM SST seasons during the last 30 years of this century could

result in a 10% to 20% increase in 100-year precipitation return levels during hurricane

season for the western GC region compared to present day cool seasons. In particular,

residents of Houston and New Orleans, who have experienced devastating hurricanes

in recent history, may experience more intense precipitation extremes as a result of

warming SSTs.

Supplemental Materials

Additional information and supporting material for this article is available online at

the journal’s website.
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